Rare-Earth Separation Using Bacteria

نویسندگان

  • William D. Bonificio
  • David R. Clarke
چکیده

The rare-earth elements are critical to many green energy technologies but are difficult to separate from one another because of their chemical similarity. We demonstrate an alternative, biogenic method based on the adsorption of lanthanide to the bacterium Roseobacter sp. AzwK-3b, immobilized on an assay filter, followed by subsequent desorption as a function of pH. The elution desorption data suggest that the basicity of the individual lanthanides is important in determining their desorption behavior. It is found that via preprotonation of the bacteria it is possible to concentrate a solution of equal concentrations of each lanthanide to nearly 50% of the three heaviest lanthanides (Tm, Lu, and Yb) in just two passes. This surpasses existing industrial practice. The findings suggest that there is an opportunity to harness the diversity of bacterial surface chemistry to separate and recover technologically important rare-earth metals in an environmentally benign manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of performances of solvents D2EHPA, Cyanex272, and their mixture system in separation of some rare earth elements from a Nitric Acid solution

This work was aimed to evaluate and compare the performances of the solvents D2EHPA (Di-(2-ethylhexyl) phosphoric acid), Cyanex 272 (bis (2,4,4-trimethylpentyl) phosphinic acid), and a mixture system of D2EHPA and Cyanex272 in the separation of some rare earth elements (REEs) including lanthanum, gadolinium, neodymium, and dyspersym from a nitric acid solution. The results obtained showed that ...

متن کامل

Concentration and recycling of rare earth elements (REEs) from iron mine waste using a combination of physical separation methods

This study aims to investigate and optimize the effects of the main parameters including the particle size, gravity and magnetic separation combination, high gradient magnetic separation, magnetic field intensity, shaking table slope, washing water flow, and electrostatic separation upon the rare earth element (REE) recoveries from iron mine waste. The electron microprobe showed that high amoun...

متن کامل

Solvent Extraction and Transport of Rare Earth Metal Ions Using 5.11.17.23-Tetra-tert-butyl-25,27-bis (diethylcarbomoylmethoxy)-26,28-dihydroxy Calix[4]arene

The solvent extraction of rare earth metal ions from nitrate solutions by 5.11.17.23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-dihydroxycalix[4]arene (L) in 1,2-dichloroethane has been investigated. The alalysis of the extraction equilibrium obtained from a mixture of La3+, Eu3+, Er3+ and Y3+ revealed that the extracted species hav...

متن کامل

Carbon Nanotube Cluster Based Micro-Fluidic System for Bacteria Capture, Concentration, and Separation

Disease-causing pathogens continue presenting enormous global health problems, especially due to their easy transmittance to people via water supply systems. The detection, filtration, and purification of bacteria-contaminated water samples are complex activities, ones subject to considerable error. Here we present a new and highly effective micro-fluidic system with carbon nanotube (CNT) clust...

متن کامل

Recovery and Separation of Rare Earth Elements Using Salmon Milt

Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016